GPU Accelerated Discontinuous Galerkin Time Domain Algorithm for Electromagnetic Problems of Electrically Large Objects

نویسندگان

  • Lei Zhao
  • Geng Chen
  • Wenhua Yu
چکیده

In this paper, an efficient time domain simulation algorithm is proposed to analyze the electromagnetic scattering and radiation problems. The algorithm is based on discontinuous Galerkin time domain (DGTD) method and parallelization acceleration technique using the graphics processing units (GPU), which offers the capability for accelerating the computational electromagnetics analyses. The bottlenecks using the GPU DGTD acceleration for electromagnetic analyses are investigated, and potential strategies to alleviate the bottlenecks are proposed. We first discuss the efficient parallelization strategies handling the local-element differentiation, surface integrals, RK time-integration assembly on the GPU platforms, and then, we explore how to implement the DGTD method on the Compute Unified Device Architecture (CUDA). The accuracy and performance of the DGTD method are analyzed through illustrated benchmarks. We demonstrate that the DGTD method is better suitable for GPUs to achieve significant speedup improvement over modern multi-core CPUs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Domain Numerical Solutions of Maxwell Interface Problems with Discontinuous Electromagnetic Waves

This paper is devoted to time domain numerical solutions of twodimensional (2D) material interface problems governed by the transverse magnetic (TM) and transverse electric (TE) Maxwell’s equations with discontinuous electromagnetic solutions. Due to the discontinuity in wave solutions across the interface, the usual numerical methods will converge slowly or even fail to converge. This calls fo...

متن کامل

GPU Acceleration of a High-Order Discontinuous Galerkin Incompressible Flow Solver

We present a GPU-accelerated version of a high-order discontinuous Galerkin discretization of the unsteady incompressible Navier–Stokes equations. The equations are discretized in time using a semi-implicit scheme with explicit treatment of the nonlinear term and implicit treatment of the split Stokes operators. The pressure system is solved with a conjugate gradient method together with a full...

متن کامل

A Comparative Study of 2D Numerical Methods with GPU Computing

Graphics Processing Unit (GPU) computing is becoming an alternate computing platform for numerical simulations. However, it is not clear which numerical scheme will provide the highest computational efficiency for different types of problems. To this end, numerical accuracies and computational work of several numerical methods are compared using a GPU computing implementation. The Correction Pr...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

Modified Physical Optics Approximation for RCS Calculation of Electrically Large Objects with Coated Dielectric

The Radar Cross Section of a target plays an important role in the detection of targets by radars‎. ‎This paper presents a new method to predict the bistatic and monostatic RCS of coated electrically large objects. ‎The bodies can be covered by lossy electric and/or magnetic Radar Absorbing Materials (RAMs)‎. ‎These materials can be approximated by the Fresnel reflection coefficients‎. ‎The pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016